Assessment of Parkinson’s Disease Severity using Machine Learning

Dr Jonathan O’Keeffe +44 7894 123 679 jonathan@machinemedicine.com

Motor assessment in Parkinson’s disease (PD) currently relies on human assessors performing assessments, making it expensive and subjective. A system for the objective assessment of motor dysfunction in PD, that could be deployed at scale, would have applications in clinical trials, treatment management, and in programming Deep Brain Stimulation (DBS) devices, a major recent advance in PD therapeutics.

Machine Medicine’s KELVIN-PD platform provides objective, scalable motor assessment using video capture and machine learning techniques, with no dedicated hardware requirements. Here we present results for three tests that assess motor function in the hand and foot.

DATA CAPTURE
1. Access KELVIN-PD from any smart device via an app or the website
2. Open the digitised assessment form which has embedded video capture
3. Record the patient performing any of the UPDRS* motor function tests
4. The video is analysed frame by frame so that all relevant information is extracted

*UPDRS: Unified Parkinson’s Disease Rating Scale

FEATURE SELECTION
Many features of movement, such as amplitude and frequency of actions, correlate with disease severity.

MODEL SELECTION
Linear Regression models achieve worse results than the more complex Random Forest Regression.

AUTOMATED ASSESSMENT RESULTS
Machine learning models were trained to estimate disease severity from videos of UPDRS motor assessments. For each model presented here the results were highly significant, with over 95% of predictions being close (+/- 1) to the severity score assigned by a trained UPDRS assessor.

DATASET
The predictive models are developed using videos of patients from across the severity spectrum, recorded by trained UPDRS assessors at a range of institutions.

ANALYSIS

Right Hand:
- Mild Symptoms
- Severe Symptoms

Left Hand:
- Severe Symptoms

MachineMedicine.com/KELVIN-PD